In publica commoda

Veranstaltung


Irreducible SL(2,C)-representations of integer homology 3-spheres

Titel der Veranstaltung Irreducible SL(2,C)-representations of integer homology 3-spheres
Reihe MathematischeGesellschaft
Veranstalter Mathematisches Institut
Referent/in Prof. Dr. Raphael Zentner
Einrichtung Referent/in Universität Regensburg
Veranstaltungsart Kolloquium
Kategorie Forschung
Anmeldung erforderlich Nein
Beschreibung Abstract: We prove that the splicing of any two non-trivial knots in the 3-sphere admits an irreducible SU(2)-representation of its fundamental group.
This uses instanton gauge theory, and in particular a non-vanishing result of Kronheimer-Mrowka and some new results that we establish for holonomy perturbations of the ASD equation. Using a result of Boileau, Rubinstein and Wang (which builds on the geometrization theorem of 3-manifolds), it follows that the fundamental group of any integer homology 3-sphere different from the 3-sphere admits irreducible representations of its fundamental group in SL(2,C).
Zeit Beginn: 19.10.2017, 16:15 Uhr
Ende: 19.10.2017 , 17:15 Uhr
Ort Mathematisches Institut (Bunsenstr 3-5)
Sitzungszimmer, Bunsenstr. 3-5, 37073 Göttingen
Kontakt S.Herzig
sabrina.herzig@mathematik.uni-goettingen.de