Veranstaltung
Irreducible SL(2,C)-representations of integer homology 3-spheres
Titel der Veranstaltung | Irreducible SL(2,C)-representations of integer homology 3-spheres |
Reihe | MathematischeGesellschaft |
Veranstalter | Mathematisches Institut |
Referent/in | Prof. Dr. Raphael Zentner |
Einrichtung Referent/in | Universität Regensburg |
Veranstaltungsart | Kolloquium |
Kategorie | Forschung |
Anmeldung erforderlich | Nein |
Beschreibung | Abstract: We prove that the splicing of any two non-trivial knots in the 3-sphere admits an irreducible SU(2)-representation of its fundamental group. This uses instanton gauge theory, and in particular a non-vanishing result of Kronheimer-Mrowka and some new results that we establish for holonomy perturbations of the ASD equation. Using a result of Boileau, Rubinstein and Wang (which builds on the geometrization theorem of 3-manifolds), it follows that the fundamental group of any integer homology 3-sphere different from the 3-sphere admits irreducible representations of its fundamental group in SL(2,C). |
Zeit | Beginn: 19.10.2017, 16:15 Uhr Ende: 19.10.2017 , 17:15 Uhr |
Ort |
Mathematisches Institut (Bunsenstr 3-5) Sitzungszimmer, Bunsenstr. 3-5, 37073 Göttingen |
Kontakt |
S.Herzig sabrina.herzig@mathematik.uni-goettingen.de |