- P. Mickan and T. Hohage. Stability and Instability for a Random Inverse Source Problem, L. Gizon (Eds.), Proceedings of The 16th International Conference on Mathematical and Numerical Aspects of Wave (2024), 209-21.
2023
- L. Lammers, D. Tran Van, T.M.W. Nye and S. Huckemann. Types of Stickiness in BHV Phylogenetic Tree Spaces and Their Degree, GSI 2023: Geometric Science of Information (2023), 357-365.
- S. Ulmer, D. Tran Van, and S. Huckemann. Exploring Uniform Finite Sample Stickiness, GSI 2023: Geometric Science of Information (2023), 349–356.
2022
- R. Razavi, H. Rabbani, and G. Plonka. Combining Non-Data-Adaptive Transforms for OCT Image Denoising by Iterative Basis Pursuit. 2022 IEEE International Conference on Image Processing (ICIP) (2022).
2021
- B. Eltzner, S. Hundrieser, and S. Huckemann. Finite Sample Smeariness on Spheres. GSI 2021: Geometric Science of Information (2021).
- M.K. Garba, T.M.W. Nye, J. Lueg, and S. Huckemann. Information Metrics for Phylogenetic Trees via Distributions of Discrete and Continuous Characters, GSI 2021: Geometric Science of Information (2021), 701-709.
- S. Hundrieser, M. Klatt, and A. Munk. Entropic Optimal Transport on Countable Spaces: Statistical Theory and Asymptotics. Proceedings of the Entropy 2021: The Scientific Tool of the 21st Century (2021).
- H. Knirsch. Optimal Rank-1 Hankel Approximation in the Spectral Norm for Matrices with Multiple Largest Eigenvalue. PAMM. Proc. Appl. Math. Mech. 21(1) (2021), e202100012.
- H. Knirsch, M. Petz, and G. Plonka. The Difference between Optimal Rank-1 Hankel Approximations in the Frobenius Norm and the Spectral Norm. PAMM. Proc. Appl. Math. Mech. 20(1) (2021), e202000085.
- J. Lueg, M.K. Garba, T.M.W. Nye, and S. Huckemann. Wald Space for Phylogenetic Trees , GSI 2021: Geometric Science of Information (2021), 710-717.
- V. Natarovskii, D. Rudolf, and B. Sprungk. Geometric Convergence of Elliptical Slice Sampling. Proceedings of Machine Learning Research (2021), 7969-7978.
- M. Petz, G. Plonka, and N. Derevianko. Rational Functions for the Reconstruction of Exponential Sums from their Fourier Coefficients. PAMM. Proc. Appl. Math. Mech. 21(1) (2021), e202100078.
- G. Plonka and T. von Wulffen. Iterative Sparse FFT for M-sparse Vectors: Deterministic versus Random Sampling. PAMM. Proc. Appl. Math. Mech. 20(1) (2021), e202000134.
2020
- M. Behr, M. A. Ansari, A. Munk, and C. Holmes. treeSeg: Testing for dependence on tree structures. Proc. Natl. Acad. Sci. USA 117(18) (2020), 9787-9792.
2019
- D. Franklin, J. Hogan, and M. K. Tam. Higher-dimensional wavelets and the Douglas-Rachford algorithm SampTA, accepted (2019).
- I. Keller, G. Plonka, and K. Stampfer. Reconstruction of Non-Stationary Signals by the Generalized Prony Method PAMM, Proc. Appl. Math. Mech. 19(1) (2019), e201900358.
- L. F. Schneider, T. Staudt, and A. Munk. Posterior Consistency in the Binomial (n,p) Model with Unknown n and p: A Numerical Study, BAYSM (2019), 35-42.
2018
- D. R. Luke, A.-L. Martins, and M. K. Tam. Relaxed Cyclic Douglas-Rachford Algorithms for Nonconvex Optimization. ICML 2018 Workshop: Modern Trends in Nonconvex Optimization for Machine Learning (2018).
- C. Tameling and A. Munk. Computational Strategies for Statistical Inference Based on Empirical Optimal Transport. IEEE Data Science Workshop (2018).
2017
- R. Budinich. Image Compression with the Region Based Easy Path Wavelet Transform. PAMM. Proc. Appl. Math. Mech. 17(1) (2017), 831-832.
- V. Pototskaia and G. Plonka. Application of the AAK theory and Prony‐like Methods for sparse approximation of exponential sums. PAMM. Proc. Appl. Math. Mech. 17(1) (2017), 835-836.
2016
- G. Plonka and V. Pototskaia. Sparse approximation by Prony's method and AAK theory. Oberwolfach Reports 33 (2016), 1890-1892.
- M. K. Tam. Iterative Projection and Reflection Methods: Theory and Practice. Bull. Aust. Math. Soc. 94 (2016), 175-176.
- N. H. Thao. Regularity properties in variational analysis and applications in optimisation. Bull. Aust. Math. Soc. 93 (2016), 523-524.
2015
- R. Beinert and G. Plonka. Ambiguities in one-dimensional phase retrieval of structured functions. PAMM, Proc. Appl. Math. Mech. 15 (2015), 653-654.
- G. Plonka and K. Wannenwetsch. Deterministic sparse FFT algorithms. PAMM. Proc. Appl. Math. Mech. 15 (2015), 667-668.
- G. Plonka and K. Wannenwetsch. A deterministic sparse FFT algorithm for vectors with short support. Oberwolfach Reports 38 (2015), 2229-2232.