We are sorry

The contents of this page are unfortunately not available in English.

Press release: Lipidzusammensetzung bestimmt Energie der Membranverschmelzung

Nr. 91/2012 - 16.05.2012

Göttinger Biophysiker lösen Struktur bei der Membranfusion mit Röntgenstrahlen auf

(pug) Membrane bestehen im Wesentlichen aus einer Lipiddoppelschicht und Membranproteinen und verhindern die unkontrollierte Durchmischung von Stoffwechselprodukten und Ionen. Bei einer Vielzahl von biologischen Prozessen – wie beispielsweise bei der Nervenreizleitung, der Befruchtung oder der Ausscheidung von Stoffwechselprodukten aus der Zelle – ist jedoch eine kontrollierte Verschmelzung von Membranen erforderlich, die sogenannte Membranfusion. Wie diese Fusion auf molekularer Ebene abläuft ist in der Biophysik nach wie vor unbekannt. Zwar konnten bereits etliche Membranproteine identifiziert werden, welche die Fusion regulieren, und auch die molekulare Struktur der Proteine konnte weitgehend aufgeklärt werden. Die eigentliche Strukturänderung der Lipiddoppelschicht lässt sich jedoch nicht auflösen. Biophysiker um Dr. Sebastian Aeffner und Prof. Dr. Tim Salditt von der Fakultät für Physik der Universität Göttingen haben sich nun eines Tricks bedient, um die dreidimensionale Struktur bei der Verschmelzung von Membranen mit der Röntgenbeugung aufzuklären. Die Ergebnisse sind in der Zeitschrift Proceedings of the National Academy of Sciences Plus erschienen.

Die Göttinger Wissenschaftler brachten Lipidmembrane durch den Entzug von Wasser so eng in Kontakt, bis die Anordnung der Lipiddoppelschicht instabil wurde und sich Verbindungen zwischen benachbarten Membranen bildeten. Die Lipidmembrane fusionieren also nicht vollständig, weisen aber die für die Fusion typischen strukturellen Zwischenstufen auf. „Wenn man nun Stapel aus Hunderten bis Tausenden von Lipidmembranen verwendet, ordnen sich diese Verbindungen zwischen benachbarten Membranen periodisch im Raum an, obwohl sich Lipidmoleküle weiterhin wie in einer Flüssigkeit mischen. Dieser künstliche, durch osmotischen Druck stabilisierte fluide Kristall kann dann mit hochbrillanter Röntgenstrahlung untersucht werden“, erklärt Dr. Aeffner.

Die Ergebnisse dieser Messung sind überraschend: Die Struktur der Membranverschmelzung war bei allen untersuchten Lipidsystemen äußerst ähnlich, und die Verschmelzung fand immer bei dem gleichem kritischen Abstand statt. Große Unterschiede ergaben sich allerdings in der Arbeit, die geleistet werden muss, um die Membrane auf diesen Abstand zusammen zu bringen, und in der Energie, die für die Krümmung der Membrane aufgewendet werden muss. Durch Vergleich der unterschiedlichen Lipidzusammensetzung lässt sich nun verstehen, welche Lipide sich zum Beispiel durch das Einwirken von Proteinen verschmelzen lassen und bei welchen Lipiden die benötigte Energie kaum noch unter physiologischen Bedingungen in den biologischen Zellen aufgebracht werden kann. Dieses Wissen könnte helfen, Verschmelzungsprozesse von Membranen zu kontrollieren, die bei der Verabreichung von Arzneistoffen eine Rolle spielen.

Originalveröffentlichung: Sebastian Aeffner et al. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proceedings of the National Academy of Sciences Plus (PNAS) 2012. DOI:10.1073/pnas.1119442109

Kontaktadresse:
Prof. Dr. Tim Salditt
Georg-August-Universität Göttingen
Fakultät für Physik – Institut für Röntgenphysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-9427, Fax (0551) 39-9430
E-Mail: tsaldit@gwdg.de
Internet: www.roentgen.physik.uni-goettingen.de